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ABSTRACT 
This position paper describes an approach to building spoken dia- 
logue systems for environments containing multiple human speak- 
ers and hearers, and multiple robotic speakers and hearers. We 
address the issue, for robotic hearers, of whether the speech they 
hear is intended for them, or more likely to be intended for some 
other hearer. We will describe data collected during a series of 
experiments involving teams of multiple human and robots (and 
other software participants), and some preliminary results for dis- 
tinguishing robot-directed speech from human-directed speech. The 
domain of these experiments is Mars-analogue planetary explo- 
ration. These Mars-analogue field studies involve two subjects in 
simulated planetary space suits doing geological exploration with 
the help of 1-2 robots, supporting software agents, a habitat com- 
municator and links to a remote science team. The two subjects are 
performing a task (geological exploration) which requires them to 
speak with each other while also speaking with their assistants. The 
technique used here is to use a probabilistic context-free grammar 
language model in the speech recognizer that is trained on prior 
robot-directed speech. Intuitively, the recognizer will give higher 
confidence to an utterance if it is similar to utterances that have 
been directed to the robot in the past. 

1. INTRODUCTION 
Mars-analogue field studies are an important component in the plan- 
ning for human exploration of the Moon or Mars, to evaluate new 
technologies and work practices for planetary exploration[3]. In 
these studies, two subjects play the role of astronauts performing 
Extra-Vehicular Activities (EVAs), together with one or two robotic 
assistants, while a third subject plays the role of Habitat Command 
(HabCom), overseeing the EVA from the habitat. The astronaut 
subjects wear simulated space suits that provide weight, sensory 
and mobility limitations, and a portable computing platform con- 
taining a laptop computer, wireless network receiver, and GPS and 
bio-medical sensors. The astronauts communicate with each other, 
with HabCom, and with the field-test support staff using radios. 

The mobile autonomous robots used in the field have been provided 
by NASNJohnson Space Center’s Automation, Robotics and Sim- 

ulation Division [lo]. The robots are equipped with high-mobility 
components, cameras and other sensors (including GPS for local- 
ization), and on-board laptops running the software systems. The 
robots are named ”Boudreaux” and ”Thibodeaux”, and each has his 
own capabilities and uniquely distinguishable synthesized voice. 

Planetary exploration is just one of a growing number of chal- 
lenges that are likely to require cooperaring teams of humans and 
robots, includin-g applications to search and rescue[l9], and the 
military[l2]. Spoken dialogue interfaces are a natural choice for 
many human-robot applications[25]. Spoken dialogue is especially 
critical in the domain of planetary exploration, due to the mobility 
limitations imposed by pressurized space suits and gloves[28,2]. 

The vast majority of prior work in spoken dialogue systems, both 
commercial applications and research, have primarily been con- 
cerned with situations in which a single user is speaking to a di- 
alogue system, and where all speech from the user is understood to 
be directed towards that dialogue system[l, 5,  17, 24, 271. Given 
the inevitability of speech recognition errors, these systems em- 
phasis robustness[ll, 29, 181. Any speech that is not responded to 
indicates a communication failure between the user and system. 

In contrast to these applications, communication in mixed human- 
robot teams will take place both between the robots and the hu- 
mans, and amongst the humans themselves. Data from our field 
tests (see Section 3) indicates that approximately 60% of the speech 
data is between the human participants, making human-human speech 
the dominant condition. In this condition, a failure to respond can 
be completely felicitous. 

The primary technical challenge in this paper then is to distinguish 
between the human-human speech that the dialogue system hears, 
and the human-robot speech, with the dialogue system hopefully 
only responding to the human-robot turns. We have considered 
two alternatives to addressing this classification problem. The first 
is to require the user to send a physical signal (button-push or key- 
stroke) to indicate to the robot when they are talking to it. The dis- 
advantages of this alternative are that it requires extra effort from 
the user, especially given the limited hand mobility in the space suit 
glove, and that the geological survey and rock sampling tasks fre- 
quently require that the hands remain free. The second alternative 
we considered is to require the user to speak a special phrase, such 
as Computer on Star Trek, to indicate to the computer when it is be- 
ing spoken to. We did adopt this approach in part, since the robots 
are sometimes addressed by name, Boudreaux or Thibodeaux) (see 
Section 2). But, requiring such an address before each human-robot 
turn seems likely to increase the cognitive burden on the user, and 
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Planning 
Start walking to way point one activity. 
What is my current activity? 
What is my next activity? 
How much time is left? 
What time is it? 
Change duration to twenty minutes. 
Navagation 
Where is way point one? 
Where is Thibodeaux? 
Name this location Work Site Two. 
What locations are near me? 
Track my location every twenty seconds. 
Science Data 
Create a new sample. 
Download an image from my camera. 
Label it image one. 
Associate it with the sample bag. 
Record a voice note. 
List sample bags. 
4ssociate the voice note with sample bag one. 
Play the voice note associated with sample bag one. 
b b o t  Commands 
Boudreaux come here. 
rhibodeaux move to Work Site Two. 
jollow me. 
Match Astronaut Two. 
lalt. 
30 you still have network connectivity? 
rake a picture of Astronaut Two. 
rake a panorama and label it image at Work Site Two. 
'rint a curation label for sample bag one. 
rhibodeaux team with Astronaut Two. 
7ther 
;ay that again. 
:an you hear me? 
ncrease volume. 
;hut UD. 

TabIe 1: Dialogue System Examples 

force the user to repeat themselves when they inevitably forget to 
begin the turn with the required phrase. 

2. DIALOGUE SYSTEM 
The dialogue system acts as a front-end to a software architecture 
for supporting surface EVA operations[4]. The capabilities pro- 
vided by this architecture include monitoring the astronauts phys- 
ical status through bio-medical sensors, monitoring the progress 
through the scheduled activities that comprise the EVA, monitor- 
ing the locations of all participants using GPS sensors, assisting 
with navigation, assisting the astronaut in collecting, describing, 
and logging science data (rock samples, voice annotations, digi- 
tal images, etc.) with time and GPS stamps, and commanding the 
robotic assistants (Boudreaux and Thibodeaux). The dialogue sys- 
tem provides access to about 90 functions supporting these activ- 
ities. Some examples of language supporting these functions are 
given in Table 1. Initiative in this system usually stays with the 
human user, although the dialogue system may ask yeslno ques- 
tions for confirmation, and a robot may ask a yeslno question if it 
is trying to balance conflicting goals (e.g. when it has been asked 

Date I SpeechData 
Sept. 2-13,2002 I 3,695 

March 3 1 -April 1 1,2003 4,659 
April 26-May 7,2004 11,079 

Table 2: Amount of Speech Data Collected 

to follow the astronaut, and also asked to maintain network connec- 
tivity, and observes that network throughput is decreasing). 

The dialogue system uses an architecture that has been used for 
a number of deployed spoken dialogue systems[l7, 22, 141. This 
architecture combines independent software components using the 
Open Agent Architecture[l5]. The components included in this 
application include the Nuance speech recognizer[20], the Festival 
speech synthesizer[S], the Gemini language interpretation and gen- 
eration system[6], the Brahms agent modeling and simulation envi- 
ronment[26], and a dialogue manager. The custom software com- 
ponents required to build this spoken dialogue system are the gram- 
mar and lexicon (approximately 1250 woids) developed in Gzij5i-i 
and compiled into a Nuance grammar, and the dialogue manager. 

The language model used in the Nuance speech recognizer for this 
application was developed using the techniques of [7] in Gemini. 
Initially, a grammar is developed in Gemini in a typed unification- 
grammar (TUG) representation, which is then compiled into a Context- 
Free Grammar (CFG) in Nuance's Grammar Specification Lan- 
guage (GSL) form. This is in-turn converted to a Probabilistic 
Context-Free Grammar PCFG) using training data and Nuance's 
COMPUTE-GRAMMAR-PROBS tool. using the more compact TUG 
formalism allows us to represent a large CFG using a small number 
of rules. In this application, the grammar in TUG formalism com- 
prised 75 Gemini rules, while the resulting CFG contained 4,368 
rules. More details about how the language model is trained will be 
given in Section 4. 

3. MARS-ANALOGUE FIELD TESTS 
The spoken dialogue system we are developing has been used in 
4 Mars-analogue field tests over the past 4 years. Each field test 
is two-weeks long, and takes place in harsh environments on Earth 
to simulate harsh environments on the moon or Mars. These field 
tests have been conducted as part of the Mobile Agents project at 
NASA's Ames Research Center (Principle Investigator: William 
Clancey), and in cooperation with the Mars Society. The most re- 
cent field tests have been conducted at the Mars Society Desert Re- 
search Station[ 161 in south-eastern Utah. The speech recognition 
experiments described in Section 4 were carried out using speech 
data from the 2003 and 2004 field tests. The 2002 data was omitted 
since it was collected in a single speaker scenario' A set of 14,103 
utterances will be used for these experiments, of which 8,389 ut- 
terances (60%) is human-human speech, and 5,714 utterances is 
human-robot speech (40%). Figure 1 shows a frequency distribu- 
tion of utterance length (number of words) for the human-human 
subset of the corpus, with a mean utterance length of 6 words. Fig- 
ure 2 shows a similar frequency distribution of the human-robot 
utterances, mean length of 3.8 words. 

The speech data has a few characteristics that distinguish it from 

'The 2005 data, ind some of the 2004 data, is still in the process 
of being transcribed. 
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# Human-Human 
# Human-Robot 

Word Error 
False Accept 
False Reject 

xCPU RT (Human-Robot) 
xCPU RT (Human-H~man) 

Figure 1: Word-length Distribution of Human-Human Utter- 
ances 

Train Test 
4,194 4,195 
2,854 2,860 
6.5% 6.5% 
8.8% 9.8% 
9.7% 9.6% 

0.39 0.37 
0.63 0.62 

most existing speech corpora. Although the speech data includes 
data from 10 different speakers, the vast majority of the data comes 
from just 3 speakers, the subjects primarily playing the roles of As- 
tronaut 1, Astronaut 2, and HabCom. Since these same 3 speakers 
have participated in 3 of the field tests, they are now expert users of 
both the spoken dialogue system, and the underlying surface EVA 
operations intelligent agents. These speakers are also typically able 
to hear each other interacting with their dialogue systems, which 
may bias them towards using the same language. These character- 
istics may tend to reduce the perplexity of the collected data. 

4. RECOGNIZERPERFORMANCE RESULTS 
The speech recognition experiments proceeded by first splitting the 
available data into training and test sets, approximately 50-50. To 
access recognizer performance, we use three accuracy metrics: 

* False Accept rate - The percentage of human-human utter- 
ances that are inappropriately responded to, 

e False Reject rate - The percentage of human-robot utterances 
not responded to. 

Word Error rate - The percentage of word recognition errors 
on the non-rejected human-robot utterances. 

In addition to the error metrics, we also provide performance met- 
r i c ~  to give an indication of the computational intensity of this task 
*. The XCPU RT (percentage of CPU real time) is an indicator of 
how long it took the CPU to recognize each utterance, compared to 
how long (in seconds) the utterance was. Any number less than 1 
indicates that the recognizer is recognizing faster than the speaker 
is speaking, and indicates real-time performance. 

The recognition results are summarized in Table 3, showing that 
False-Accept and False-Reject rates of under 10% were achieved, 
in both the training and test conditions. The word error rate is 

’Experiments were conducted on a 3.2GHz Pentium 4 computer 
with 2GB memory. 
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Table 3: Recognition Results 

somewhat higher than experienced on tasks of similar vocabulary 
size, above a target range of 3-5%[17]. While the xCPU RT metric 
shows that performance on both human-human and human-robot 
speech was faster than real-time, the performance on human-human 
speech was nearly twice slower. 

4.1 Dialogue Context 
The dialogue manager can act as a secondary filter on the true false 
accept rate of the system, rejecting any utterances that are not prag- 
matically interpretable in the current discourse context. Figure 3 
shows the distribution on word-length of the utterances that get 
falsely accepted by the speech recognizer in the test data, show- 
ing that the likelihood of being falsely accepted drops quickly as 
utterance length increases. Intuitively, shorter utterances are harder 
to classifl correctly. This appears to be due to two factors: first that 
shorter utterances are more likely to accidentally match in-domain 
utterances (e.g. misrecognitions of “what” as “halt”), second that 
correctly-recognized short utterances like “yes” can be equally well 
addressed to either the robot or another human. Of these, many 
of the short utterances can be rejected by the dialogue manager 
when they are misrecognitions of afFirmative or negative responses 
(“yes”, “no”, “right”, “okay”, etc.), and when the dialogue manager 
has not recently asked a yesho question. The dialogue manager can 
also reject longer utterances when they contain pronouns or definite 
descriptions that cannot be resolved in context. 

Unlike the language model, the dialogue manager cannot be stati- 



Figure 3: Word-length Distribution of False Accept Utterances 

cally trained on training data and tested on a held-out test set. In 
a real-life field test, the speech recognition performance will affect 
how the dialogue proceeds, and in-turn effect dialogue context at 
each tum. Since the dialogue manager is built by-hand for this do- 
main, it is essentially held constant before the field test each year. 
In order to evaluate the effectiveness of the dialogue manager as a 
secondary filter, we analyzed all of the falsely accepted utterances 
in the ’04 data (both training and test). We found that, of the 516 
human-human utterances that were falsely accepted by the speech 
recognizer, only 248 (48%) resulted in actions being taken by the 
dialogue manager. Taken as a percentage of all the human-human 
utterances in the 04 data, the combined false accept rate experi- 
enced during the 04 field test was 248/5074 (4.9%). It is important 
to note that no robot moved incorrectly during any of the speech 
commanding. 

5. RELATEDWORK 
Paek, Horvitz and Ringger[21] address the issue of continuous lis- 
tening in a multi-human environment containing a mix of computer- 
directed and human-directed speech. Their target application is 
a speech-based interface to a system that can control a Microsoft 
Powerpoint presentation, moving backwards and forwards through 
the slides by voice command. They report promising results on a 
small dataset (N=16), showing that their system rarely responded 
to a human-directed utterance. In this experiment, there was only a 
single speaker, but multiple listeners. 

Two recent papers address the issue of “cross-talk”, when a single- 
user spoken dialogue system is unintentionally exposed to speech 
that is directed to another hearer, frequently the person running the 
experiment. Gabsdil and Lemon[9] report a dialogue system that 
is sensitive to the possibility that a certain percentage of the speech 
that it hears may be other-directed speech (or non-speech sounds), 
and the dialogue system should decide whether to accept, reject, or 
ignore a user utterance. They report that a combination of recogni- 
tion confidence features and pragmatic plausibility features (com- 
puted from dialogue context) improves the ability of the system 
to reject utterances that are out-of-gammar or crosstalk. Renders, 
Rayner, and Hockey[23] report on a experiment going beyond the 
utterance-based recognition confidence scores used in this paper to 

using word-based confidence scores. Their intuition is that not all 
word recognition errors are equally likely, and that some errors are 

likely to Zdicate cross-falk t h a  others. They frain a Support 
Vector Machine based on these word confidence scores to classify 
cross-talk. They also experiment with an alternative cost function, 
allowing for the possibility of treating a falsely-accepted utterance 
as having a higher cost than a falsely-rejected utterance. 

This work differs from the above work in several respects. We 
are considering contexts in which two speakers are engaged in a 
task requiring them to speak with each other, so the human-directed 
speech is not an anomalous condition, but is the dominant condi- 
tion. The subjects are also engaged in a real-world task, not an 
academic study, so we have some confidence that the distribution 
of human-human versus human-robot speech may be representative 
of other real-world tasks. 

6. CONCLUSIONS AND FUTURE WORK 
We have described a spoken dialogue system that operates in a 
mixed human-humadhuman-robot environment, where the human- 
human speech is dominant, about 60% of all speech. We have de- 
scribed some preliminary speech recognition results showing word- 
error rates in the vicinity of 6.5%, with false accept and false reject 
error rates below 10%. 

It is clear, both from this work, and the work of Gabsdil and Lem- 
mon [9] that dialogue context provides valuable information for 
distinguishing between human-directed and robot-directed speech, 
and likely of addressee recognition more generally [13]. We plan 
to explore this, and the impact of non-dialogue forms of context, 
by building targeted context-specific language models for different 
contexts. We plan to address three contexts in the near term: the 
context in which the system has just asked the user a yeslno ques- 
tion, the context in which one or more of the robots is in motion, 
and the context in which the astronaut is themselves in a traveling 
task. The first context is motivated by the observation that many 
of the current false accepts are misrecognitions of affirmative or 
negative responses. The second context is motivated by the obser- 
vation that another class of fiequent false accepts are misrecogni- 
tions of the short commands “halt” and “stop”. The third context is 
motivated by the observation that the astronaut-subjects appear to 
stay more on-task during science-data collecting activities, but are 
more likely to go off-task during traveling activities, and that this 
is likely to impact the distribution of human-directed and robot- 
directed speech. 
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